
Evaluating Streaming Strategies for Event Processing across Infrastructure Clouds

Radu Tudoran¶, Kate Keahey †, Pierre Riteau§, Sergey Panitkin‡ and Gabriel Antoniu∗
¶IRISA/ENS Cachan Rennes, France

radu.tudoran@inria.fr
∗INRIA, Rennes Bretagne Atlantique Research Center, France

gabriel.antoniu@inria.fr
†Argonne National Laboratory, Argonne, IL, USA

keahey@mcs.anl.gov
§Computation Institute, University of Chicago, IL, USA

priteau@uchicago.edu
‡Brookhaven National Laboratory, Upton, NY, USA

panitkin@bnl.gov

Abstract—Infrastructure clouds revolutionized the way in

which we approach resource procurement by providing an easy

way to lease compute and storage resources on short notice, for

a short amount of time, and on a pay-as-you-go basis. This new

opportunity, however, introduces new performance trade-offs.

Making the right choices in leveraging different types of storage

available in the cloud is particularly important for applications

that depend on managing large amounts of data within and

across clouds. An increasing number of such applications con-

form to a pattern in which data processing relies on streaming

the data to a compute platform where a set of similar operations

is repeatedly applied to independent chunks of data. This

pattern is evident in virtual observatories such as the Ocean

Observatory Initiative, in cases when new data is evaluated

against existing features in geospatial computations or when

experimental data is processed as a series of time events. In this

paper, we propose two strategies for efficiently implementing

such streaming in the cloud and evaluate them in the context

of an ATLAS application processing experimental data. Our

results show that choosing the right cloud configuration can

improve overall application performance by as much as three

times.

I. INTRODUCTION

By providing a way to lease compute and storage re-
sources on demand, for a short amount of time, and on
a pay-as-you-go basis, infrastructure cloud computing rev-
olutionized the way in which we approach resource pro-
curement. This innovation is proving fundamental to the
construction of systems capable of rapid scaling and high
reliability. At the same time, however, as has been shown
by multiple evaluation efforts [1], [2], [3], the performance
trade-offs inherent in current virtualization technology mean
that data-intensive applications are often not the best fit for
infrastructure clouds and consequently cannot leverage the
advantages of cloud computing.

This technological shortcoming is particularly impactful
in the Big Data era. An increasing number of Big Data
applications conform to a pattern in which data processing
relies on streaming the data to a compute platform where

a set of similar operations is repeatedly applied to inde-
pendent chunks of data. This pattern is evident in virtual
observatories such as the Ocean Observatory Initiative [4],
in cases when new data is evaluated against existing features
in geospatial computations (e.g., FluMapper[5]) or when
experimental data is processed as a series of time events
[6], [7]. These applications often need real-time response
time, for example, to adaptively redeploy sensors in a virtual
observatory or to support an experiment. Moreover, they
need to scale rapidly to fluctuating request numbers as the
detection of new phenomena generates more questions and
thus necessitates more processing. This type of application
clearly could benefit from on-demand resource availability
provided by cloud computing, but they are often costly or
hard to structure because of difficulties and inefficiencies in
data management in the cloud.

In this paper, we propose two strategies for efficiently
implementing streaming in the cloud for such applications.
The first strategy seeks to overlap computation and commu-
nication by streaming data directly to the nodes where the
computation takes place, in such a way that the rate of data
streaming keeps pace with computation; the second strategy
relies on first copying data to the cloud and then using it
for computation. We evaluate these strategies in the context
of an Atlas application application [8], [9] processing ex-
perimental data in terms of both performance and cost. Our
results indicate the ways in which communication in the
cloud can interfere in computation. We show that choosing
the right cloud configuration can improve overall application
performance by as much as three times and can significantly
reduce the cost.

The paper is organized as follows. Section II describes
the features of infrastructure clouds relevant to this paper,
defines the type of applications and the interaction pattern
addressed in the paper, and describes the two streaming
strategies evaluated in the paper. Section III presents our
experimental setup and describes the experiments we per-

formed to evaluate the two strategies. Section IV discusses
their respective costs. In Section V we discuss related work.
In Section VI we summarize our conclusions.

II. BACKGROUND

A. Cloud Storage Basics
Infrastructure-as-a-Service (IaaS) clouds allow users to

deploy virtual machines (VMs) instances, thus leasing com-
puting capacity for a short amount of time usually paid
for per hour. In addition to computing capability, cloud
providers offer several types of storage with different avail-
ability, access, and performance characteristics, at different
price. These types of storage are as follows.

• Ephemeral storage - is the local virtual disk attached
to a deployed instance. Its storage capacity can reach
up to many terabytes depending on the instance type,
but it persists only for the lifetime of the instance and
is thus subject to sudden loss when the instance fails
unexpectedly. The storage is free in the sense that it
comes with the cost of leasing an instance.

• Persistent attached storage - provides network-
attached block-level storage volumes that can be at-
tached to a running instance and exposed as a storage
device within that instance. The lifetime of this type
of storage is independent of the instances that mount
it, i.e., it can be reused by many instances. Charges
vary based on the size of volumes used and period
of usage. Examples of persistent attached storage are
Amazon Elastic Block Storage (EBS) [10] and Azure
drives [11].

• Cloud storage - offers data storage as binary objects
(blobs), usually in a two-level namespace structure
(e.g., blobs and containers). This type of storage typi-
cally offers different levels of service, for example, in
terms of access time or redundancy, at different prices.
Users typically get charged based on the data size and
on the storage time. Examples of cloud storage include
Amazon Simple Storage Service (S3) [12], Amazon
Glacier [13], Microsoft Azure BLOBs [14], [15], and
Google Cloud Storage [16].

While cloud storage has been used in the past to provide
a file system to support a running application [7], this type
of storage is increasingly evolving to provide an archival
capability. Therefore, in this paper we focus on the first two
types of storage.

B. Streaming Applications
Increasingly more applications conform to a pattern in

which an operation is applied to many independent chunks
of data. This can happen because an operation is applied to
data regularly produced by sensors in virtual observatories
such as the Ocean Observatory initiative [4], when new data
is evaluated against existing features in geospatial computa-
tions [17], [18] or when experimental data is processed as a

Figure 1. The two main cloud streaming scenarios: Stream&Compute
(left) and Copy&Compute (right)

series of time events. The data typically is streamed from the
data source to a cluster or a cloud, where the computation
takes place, either chunk by chunk or by bunching multiple
chunks together, with the streaming constituting a significant
component of the overall computation. Optimizing this sce-
nario requires streaming to keep pace with computing. In this
paper, we call such applications “streaming applications”,
and we investigate how they can best be mapped onto
infrastructure cloud storage facilities.

As an example of a streaming application we use a data
analysis code from an ATLAS experiment at the Large
Hadron Collider [8], [9]. The application performs data
analysis searches in a channel where the Higgs decays into
t anti-t quarks. The experimental data is collected as succes-
sive time events, one event corresponding to the aggregated
readings from the ATLAS sensors at a given moment.
Because the amount of collected data is on the order of tens
of petabytes, efficient processing is of significant concern.

The application is written in the ROOT [19] version of C
and is executed as a workflow using the ProofLite frame-
work. The typical computation pattern consists of reading
the job and data description, followed by successive reads of
events that need to be processed. The data has been divided
into independent chunks by annotating it with metadata, thus
eliminating the need for communication between processes
but adding to the bulk of data that must be streamed to
each worker. The data-streaming technology used to run the
application is CERN’s xrootd client-server framework.

C. Streaming Scenarios

We consider two scenarios for managing data streaming
on infrastructure cloud facilities. In each scenario we work
with a data source and then deploy a set of compute in-
stances (or compute VMs) on a remote cloud. Each compute
instance is running a number of application workers that
process the data. The architecture of these scenarios is
presented in Figure 1.

• Stream&Compute – In this scenario data is streamed
directly from the data source to the compute instances
where it is ingested and processed by the worker
processes. The events are processed in memory as they
are streamed.

• Copy&Compute – In this scenario we allocate some
persistent storage and an additional instance that
mounts this storage in order to make it accessible to
all compute instances. The streaming is split into two
phases. First, we copy the data from the data source to
this persistent attached storage. Second, once all data
is available locally on the cloud, it is streamed locally
to the compute instances so that the computation can
begin.

The advantages of Stream&Compute are that (1) it pro-
vides better response time on a case by case basis where
not all of the data chunks to be computed are available up
front or need to be processed to yield a result; (2) it has
the potential to overlap computation and communication,
thus potentially shortening the time to compute a group
of events; and (3) it uses storage provided with instances,
thus making the computation potentially cheaper. At the
same time, we note that at large scales, network saturation
can slow the data-streaming rate to the point where it no
longer keeps pace with computation potentially necessitating
redistribution across different clouds.

The advantage of Copy&Compute is that it relies on
persistent storage, thus leading to easier repair in cases
where an instance is terminated unexpectedly: while any
terminated computations will have to be rerun, the data will
not have to be resent over wide-area network.

III. EXPERIMENTS

The goal of the experiments is to assert the validity of our
hypothesis and to determine the best options for processing
stream data using the cloud. To this purpose, we analyze a
series of experiments that compare the two main scenarios
for using the cloud: Copy&Compute and Stream&Compute.
We also discuss questions regarding scalability, bottleneck
limits, the relation between the CPU and throughput, and
the choice of instance types.

A. Experimental setup
The experiments presented here were run on FutureGrid

[20], using Hotel (a University of Chicago cloud configured
with Nimbus version 2.10.1 [21]) and Sierra (a San Diego
Supercomputing Center cloud configured with OpenStack
Grizzly [22]), as well as on the Azure commercial cloud
[23]. To implement persistent attached storage we leveraged
OpenStack Block Storage volumes for OpenStack and Azure
drives [11] for Azure. All VMs used in the experiments run
a CentOS 6.3 operating system. The Small instances used
in FutureGrid offer 1 virtual CPU, 2 GB of memory, and
20 GB of local storage. In Azure the Small VM roles have
1 CPU, which is guaranteed to be mapped to an unshared
physical CPU, 1.75 GB memory, 200 GB local storage, and
100 Mbps of bandwidth (note that while this is the advertised
bandwidth, our experience is that the effective bandwidth is
higher than 100 Mbps). Medium instances provide twice as

many resources as do Small instances (2 virtual CPU, 4
GB memory, and 40 GB ephemeral disk); and, similarly,
Large instances are 4 times larger than Small instances. The
interconnection network between the Sierra and Hotel sites
is a 10 Gbps network; the physical nodes are connected via
a 1 Gbps Ethernet network.

The Hotel Nimbus cloud was used to host the data sources
(i.e., the nodes that hold the data) for all experiments. The
Sierra OpenStack cloud was used to host the compute nodes
for all FutureGrid experiments. The Azure West US Data
Center (located in California) was used to host the compute
nodes for all Azure experiments.

The application we experimented with is composed of
small data computation units of similar size, referred to as
events. Small size differences appear because the events ag-
gregate measurements of different aspects of a phenomenon,
which may or may not be detected at a given point. The
number of events processed is therefore a good measure
of the progress of the application. We used the following
metrics for our experiments.

• Compute Rate – this is the amount of events that
are processed in a time unit; the metric unit is
events/second.

• Data Rate – this is the amount of data that is
read or acquired in a time unit; the metric unit is
megabytes/second.

For the Stream&Compute case, we measured the compute
rate by running the program with a set number of events and
measuring on each compute node how long it took from
start to finish of the computation. For the Copy&Compute
case, the experiment involved two phases: a remote site
copy followed by the computation on local data. For the
first phase, we used the “time” command to measure how
long a remote copy took using “scp”. This was then added
to the time taken by the application to complete processing
over the set of events transferred. We measured the data rate
by dividing the amount of input data by the total time to
complete its processing. For the Copy&Compute case, this
total time included both the remote data copy and running
the application. We increased the input data size as we
scaled up the number of instances (i.e., the amount of data
processed with 32 VMs is equal to 32 times the amount of
data for one VM).

For each measurement presented in the charts, 100 in-
dependent experiments were performed. The values shown
represent the averages.

B. Copy&Compute vs. Stream&Compute
We first present average per VM compute rates and per

VM data rates to application VMs deployed on FutureGrid
small instances as well as Azure small instances. The aver-
age data rate per VM is computed by taking the total data
rate for a given application VM configuration and dividing
it by the number of VMs on which the application was

Figure 2. Comparing Copy&Compute and Stream&Compute scenarios in
FutureGrid, considering average compute (left) and data (right) rates per
VM

Figure 3. Comparing the Copy&Compute and Stream&Compute scenarios
in Azure, considering average compute (left) and data (right) rates per VM

deployed. Figure 2 shows the results for FutureGrid and
Figure 3 for Azure. In addition to the data shown in the
figures, we note that the results for the Copy&Compute
operation show a higher variability, having a coefficient of
variation (i.e., standard deviation / mean) of ∼20%, than
do the results for the Stream&Compute data, which has a
coefficient of variation of ∼10%. The remote copy phase is
mainly responsible for this high variability; the variability
on local dissemination is very low.

We see that in both cases Copy&Compute outper-
forms Stream&Compute. The Copy&Compute strategy of-
fers three to four times better performance than does
Stream&Compute. This is contrary to our expectation; we
expected the Stream&Compute method to be faster because
of overlapping computation and communication. The over-
lapping of the computation with communication is available
at the level of the framework, with no particular optimiza-
tions set up on our side. Hence, similar results are expected
for any framework that provides such a behavior: acquiring
the data for the next step of the computation while the
available data for the current step is being processed.

In addition, we see a drop in per VM average data and
compute rates for the Copy&Compute case on Azure once
we reach 16 VMs. This reflects the bandwidth limitation of
100 Mbps to the Azure EBS node from which data is shared
among the application nodes at a potential throughput of
about 4 MB/s. As more nodes want to access the data on
the EBS node at the same time the maximum bandwidth
of this node is reached, and the resulting contention slows
the data access. This situation could potentially be fixed by

Figure 4. Asserting the data acquisition throughput with respect to the
CPU load for three different instance types

either assigning the EBS node to a larger instance or by
striping the access to the data over multiple nodes.

To understand why Copy&Compute outperforms
Stream&Compute, we first compared data throughput of a
VM using an ephemeral disk (as in the Stream&Compute
scenario) and a VM using EBS (as in the Copy&Compute
scenario) by copying large data files (0.5 GB) between
Hotel and Sierra using the Unix “scp” command. The
results, labeled EphemeralCopy and EBSCopy, respectively,
are shown in Figure 4. We found that the throughput for
small instances (the ones used in our experiments) in both
cases was almost the same, so that the high throughput
was not correlated with using EBS. However, when we
induced a 100% CPU load using the Unix “stress” tool
with 8 threads spinning over sqrt (“–cpu N”) and spinning
over the pair (memalloc/free) (“–vm N”), we saw the
throughput diminish significantly – to roughly one-fifth of
the initial throughput – but again roughly equally in the
EBSCopy and EphemeralCopy case. In other words, the
drop in throughput is correlated to processing because not
enough CPU cycles are available both to do the processing
and to manage the incoming data. Since the EBS node in
Copy&Compute is dedicated to just handling the network
traffic and the compute nodes in Stream&Compute are
using the available cores for both computation and handling
the network traffic, fewer cycles are available for handling
the network traffic resulting in slower transfer.

The impact of CPU on I/O has been demonstrated before;
in HPC systems [24], dedicating a core for handling the data
has been shown to improve the overall performance and in
[25], the authors report a significant impact on data through-
put due to virtualization. TCP throughput degradations due
to sharing the CPU between cloud VMs are discussed also
in [26]. In [27], the authors identify the CPU as one of the
bottlenecks that need to be overcome for data transfers.

To see how additional cores may affect this scenario, we
repeated these experiments for different types of instances:
Small (1 CPU), Medium (2 CPUs), and Large (4 CPUs),
again shown in Figure 4. The results show that increasing
the number of cores does alleviate the problem; however,
since no cores are dedicated to processing data transfer
(as is effectively the case in the EphemeralCopy scenario),

Figure 5. Remote streaming with 1 worker per VM for different type
of instances. The performance metrics show the average compute rate per
(left) and the data rate (right) per VM

the data transfer in the presence of CPU load is never as
efficient as without it. To see what impact increasing the
number of cores will have on the Stream&Copy, we ran
an experiment in which we placed the application VMs in
the Stream&Copy scenario on Medium (2 virtual CPUs)
instance types and compared them with our previous results
where the application VMs are deployed on FutureGrid
Small (1 virtual CPU) instances. The results shown in
Figure 5 present the data rate and the compute rate for
the Stream&Compute scenario under those two types of
instances.

As we expected, dedicating more cores to the computation
improves the overall performance. This result is consistent
with the experiment presented in Figure 4. The performance,
however, improves only slightly, by ∼30% for the compute
rate (e.g. going from 3,400 to 4,400 events/second for 16
VMs) and by ∼25% for the data rate (e.g. going from 0.95
to 1.2 MB/s for 16 VMs). As before, since no cores are
actually dedicated to processing data transfer, the threads of
the CPU-intensive program are able to claim a large share
of attention from the CPU.

Second, we asked the question why streaming from a
remote node to application VMs (as in Stream&Compute)
is more impacted by the CPU activity than streaming from
a local (i.e., EBS) node (as in Copy&Compute). To answer
it, we used the “netem” tool to increase latency between
the EBS node and application nodes of the Copy&Compute
scenario to be equivalent to the remote latency used in the
Steam&Compute scenario (i.e., 84 ms). The result shows
that the performances (i.e., both data and compute rate) drop
to the level of the Stream&Compute scenario, with the data
rate decreasing from 7.5 MB/s to 1.2 MB/s. This shows that
the difference in latency is responsible for the difference
in performance; we believe it is tied to the data buffering
mechanism in the Atlas application.

C. Scalability for streaming

The purpose of the next set of experiment was to probe
the scalability barrier of the Stream&Compute scenario: we
expected that for large enough numbers of application VMs
the network between the data source and the application

Figure 6. Scaling the compute VMs for local and remote stream
processing. The performance metrics show the average compute rate per
(left) and the data rate (right) per VM

Figure 7. Scaling the data sources for local streaming, while keeping the
number of compute VM fixed to 64. The performance metrics show the
average compute rate per (left) and the data rate (right) per VM

VMs would become saturated and thus the data would
start arriving at the VMs at a slower rate than it could be
consumed, effectively “starving” the application and thus
slowing it. For this experiment we placed the application
nodes on the Hotel cloud since it has more nodes available
for a larger-scale experiment. We then looked at interactions
with two stream data sources: a remote source running on
the Sierra cloud and a local one.

The results of the experiment are presented in Figure
6. We observe that working with the remote data source,
we were unable to saturate the network for the scale we
tested (up to 64 application VMs) and thus the per-VM
performance remained stable. Since testbed limitations pre-
vented us from scaling further than 64 application VMs,
we instead placed the data source on the Hotel cloud (i.e.
local to the application compute nodes); our intention was
to see whether the higher available bandwidth between data
source and application nodes would allow us to saturate the
network sooner. This situation was in fact observed (Figure
6) when scaling to 64 VMs: the average compute and data
rates drop by about half as the aggregate throughput at which
the application VMs can receive exceeds the data sources
ability to send. We hypothesized that this can be fixed by
streaming from multiple data sources, and this proved to be
the case, as can be again seen in Figure 6. We therefore
conclude that it is possible to scale beyond this bottleneck
by adjusting the number of data sources with respect to the
aggregated data rates of the compute VMs. Similar results
in non-cloud scenarios were also shown by [28].

Figure 8. Comparing the performances of the compute rate (left) and data
rate (right) that can be achieved for different combinations of instance types
within the same budget (Small, Medium, Large, and xLarge VMs)

We further probed to see how much improvement can
be obtained by adding data sources. In our next experiment
we kept the number of application compute VMs fixed at
64 and increased the number of data sources. The results
are shown in Figure 7. After an initial significant increase
in performance when moving from 1 to 2 data sources,
the performance gains are smaller when going beyond 2
data sources. This upper bound is due to the physical
infrastructure, as we reach the limit of the cluster capabilities
(i.e., network switches and Ethernet links). We recall that the
nodes have 1 Gigabit Ethernet link, which means that the
average aggregated throughput to the data sources, of about
100 MB/s to each, almost consumes it completely.

D. Choosing the VM Instance Types

The cloud cost model for cloud providers such as Amazon
EC2 or Microsoft Azure links compute power of instances
to their price. For example, Microsoft Azure starts from s
base price charged for a Small instance with 1 CPU and
doubles it as the instances become more powerful (Medium
= 2x, Large=4x, xLarge=8x), consistently with the resources
provided (CPUs, memory, ephemeral storage). Thus, buying
1 Extra-Large instance is intended to be roughly equivalent
to buying 2 Large, 4 Medium, or 8 Small instances. We
therefore investigated next whether this is indeed the case
in the context of the Copy&Compute scenario.

The interesting question is whether it makes any dif-
ference from the performance point of view to choose
one type of instances or another in a setup such as the
Copy&Compute scenario. Figure 8 presents the results cor-
responding to the Copy&Compute performance obtained
when using 8 Small, 4 Medium, 2 Large, or 1 xLarge
OpenStack VMs. In each case, the computation consists of
7 processes computing the events and 1 process acquiring
data from a remote data source, potentially executing within
a different VM. The VMs are run in a multitenancy environ-
ment. The results show that the data rates for all four cases
are similar but slightly better for Small VMs, indicating that
scheduling between VMs on the same hypervisor provides
better isolation for computation and communication than
does scheduling functions within one VM. The computation
rates improve steadily for smaller VMs, with a 20% perfor-

mance improvement for the Small versus xLarge instances.
The reason is performance degradation due to the memory
and disk interference that appear between processes.

This observation indicates that, given the existing balance
of inter- and intra-hypervisor scheduling policies, it is better
to take, within the same budget, smaller VMs rather than
bigger ones. Additionally, such a strategy can potentially
harvest more physical resources, since the VMs can wind
up distributed across multiple nodes.

IV. THE COST OF STREAMING

Another interesting aspect to evaluate is the cost of
streaming to the cloud for the two streaming strategies. We
modeled this cost using the following parameters:

• VMCost: the hourly cost for renting a VM instance;
• NVMsComp: the number of VM instances used for

computation;
• NVMsData: the number of VM instances used for data

acquisition (i.e., in the Copy&Compute scenario);
• CompRateTotal: the number of events processed per

second in the system, for Stream&Compute (SC) or
Copy&Compute (CC) scenarios;

• TotalEvents: the total number of events to be pro-
cessed;

• SizeEv: the total size of the events to be processed;
• StorageCost: the cost of storing the data on persistent

storage for the duration of the computation (i.e., in the
Copy&Compute scenario);

• GBHCost: the cost of storing 1 GB of data for 1 hour,
which is computed as the StorageCost divided by the
number of hours in a 30-day period (the considered
number of days in a month), i.e., 720 hours.

Using these parameters, we can express the cost for
processing a given amount of events as the time needed
to process them multiplied by the corresponding cost of the
VM instances used.

TotalCost =
TotalEvents

CompRateTotal
∗

(NV MsData +NV MsComp) ∗ VMCost + StorageCost (1)

The typical cost of instances similar to those we used in
our computation is $0.09 per hour for Azure Small instances
(as used in our experiments) and $0.06 for Amazon VM
instances. The cost model for persistent attached storage typ-
ically considers long-term storage and is quoted in gigabytes
per month but actually is calculated per day. For example,
Azure charges $0.07 for 1 GB per month, whereas Amazon
charges $0.095 per gigabyte per month.

As an illustration, in our particular use case, we need
to consider 320 million events run on 32 compute nodes
over 41 minutes for the Stream&Compute scenario and 15
minutes for the Copy&Compute scenario. The latter requires
one extra VM instance for the data node and 5 GB of
attached persistent storage additionally leased. Overall, we

reach a global cost of $1.33 for the Stream&Compute sce-
nario compared with $0.48 for the Copy&Compute scenario,
in other words, the Stream&Compute scenario is 2.77 times
more expensive. Extrapolating to realistic application sizes
that process billions of events for multiple hours (e.g. for 1
day) using much larger numbers of VM instances, this factor
can have a substantial budget impact.

To express the price ratio between the two streaming
options in the general case, we start by expending the
StorageCost from Equation 1 in terms of the price to store
the events for the compute time interval: TotalEvent

CompRateTotal
∗

SizeEv ∗ GBHCost. Hence, by expressing the price ratio
between the cost of Stream&Compute and the cost of
Copy&Compute, we get the following.

TotalCostSC

TotalCostCC
=

TotalEvents
CompRateTotalSC

TotalEvents
CompRateTotalCC

∗

NV MsComp ∗ VMCost

(NV MsData +NV MsComp) ∗ VMCost + SizeEv ∗GBHCost

(2)

We note that the GBHCost is comparable with the
VMCost for data sizes over 720 GB. The intuition is that the
price to store 1 GB of data in the public clouds (e.g., Azure
or Amazon) for 1 month (i.e. 720 hours) is comparable with
the price of leasing one Small VM for an hour. Hence, the
amount of data to be stored per hour which matches the
VM cost is 720 GB. Thus, we can approximate the hourly
cost to store the data as SizeEv∗VMCost

720 . By applying this in
Equation 2 we can approximate the price ratio between the
two streaming options to the following.

TotalCostSC

TotalCostCC
≈ CompRateTotalCC

CompRateTotalSC
∗

NV MsComp

NV MsData +NV MsComp + SizeEv
720

(3)

Equation 3 can be used to approximate the price reduction
obtained by the Copy&Compute strategy, which is propor-
tional with the speedup over the Stream&Compute for the
computation rate of the events. For sets of events up to 720
GB, 32 to 64 compute VMs, and up to 3–4 data nodes,
the second part of the equation has values between 0.90 and
0.95. Hence, the price reduction is approximately 90%–95%
times the compute speedup between the two methods. This
approximation can be used also for the previously discussed
cost scenario, in which the Stream&Compute scenario was
shown to be 2.77 times more expensive. Doing so, we
find that the price reduction is about 2.7 to 2.85 times,
considering a speedup of 3, as per Section III-B.

V. RELATED WORK

As cloud computing become a viable option for executing
scientific applications in areas ranging from physics [7],
to chemistry [29], to biology [30] and bioinformatics [18],
understanding what cloud can provide becomes increasingly
interesting. Multiple studies have explored various data man-
agement strategies using existing storage options for clouds
[1], [2], [3], [31], [32], [33]. These general studies focus on

scientific applications that process large, unstructured sets
of static input data (i.e., data that is available in the cloud
storage when the processing starts and remains unchanged
during the computation). Consequently, the performance
aspects considered in these studies focus on I/O performance
with respect to VM instance types [1], data location [32],
or the available storage options [2], [33]. To the best of our
knowledge, however, no previous study has considered the
case of dynamic sets of independent pieces of input data
(e.g., data streamed from a large network of sensors to the
cloud for processing).

A number of performance evaluations concerning data
analysis in the clouds focus on the MapReduce [34] pro-
cessing paradigm. Relevant observations for our work show
the importance of an adequate ratio between compute nodes
and data nodes, a ratio that depends on the type of the
computation [25]. Additionally, the authors report significant
performance penalties due to the virtualization layer. Other
work related to our study was reported in [35], where
the authors analyzed the streaming features of Hadoop
[36] and reported the existence of an overhead due to
streaming. We have made a similar observation regarding
the scalability of stream processing. Since the out-of-the-
box MapReduce paradigm is not appropriate for processing
continuous streams of data, variations of the paradigm were
proposed to support stream-based analysis [37], [38]. Unlike
these studies, our performance evaluation does not focus on
stream processing using MapReduce: instead, it considers
stand-alone applications that process the stream data by
using independent batch workers.

Despite the expected growth of BigData and on-line
processing [39], most of today’s analytics systems are
limited to a single cluster or, more rarely, a single dat-
acenter [36], [40], [41]. However, due to increasing data
volumes to be processed, data starts to be distributed across
multiple data centers (e.g. the data from CERN’s ATLAS
experiment [8]). Additionally, with the emergence of wide
geographical-area observatories [42] new compute scenarios
appear in which the data sources do not reside in the
same geographical location with the compute nodes. Few
systems, mostly derived from the MapReduce paradigm,
tackle the problem of multisite or multicluster computation
[18], [43], [44]. In the case of geographically distributed
stream processing little knowledge exists about the best
options for data management. The most relevant work for
our study is [17], where the authors proposed their vision of
a stream-processing system that could potentially reach high
degrees of parallelism by means of a divide, conquer, and
combine paradigm. Unlike that work, our study focuses on
understanding how storage and compute options available on
today’s clouds can be best used to reach high performance
under low costs when processing remote stream data.

VI. CONCLUSION

We presented and evaluated two streaming strategies in
the cloud: Stream&Compute, where the data is streamed
directly to the compute nodes, and Copy&Compute, where
the data is first copied to the cloud and then used for
computation. Our results show that, contrary to our intuition,
Copy&Compute outperforms Stream&Compute by as much
as three times because of the performance trade-offs present
in current virtualization technology. This performance dif-
ference can have significant consequences in terms of cost,
especially at higher scales.

Our evaluation highlights the impact that trade-offs in
current virtualization technology can have on cloud com-
puting scenarios. Our results also illustrate the need for
hardware and virtualization technology that can provide a
more controlled allocation of CPU to I/O processing.

ACKNOWLEDGMENT

This work was supported by Inria through the
Data@Exascale Associate Team and by the U.S. Department
of Energy, Office of Science, Advanced Scientific Comput-
ing Research, under Contract DE-AC02-06CH11357. This
material is produced using the FutureGrid testbed supported
in part by the National Science Foundation under Grant
No. 0910812. Additional experiments were carried out using
Windows Azure which was supported by the joint INRIA-
Microsoft Research Center (Z-CloudFlow project).
We also want to thank the Nimbus team who provided help-
ful information about the Nimbus and FutureGrid platforms
and helped us quickly resolve the issues we encountered.

REFERENCES

[1] K. Yelick, S. Coghlan, B. Draney, and R. S. Canon, “The
Magellan Report on Cloud Computing for Science,” in U.S.
Depeartment of Energy, Office of Science, Office of Advanced
Scientific Computing Research (ASCR), 2011.

[2] G. Juve, E. Deelman, G. B. Berriman, B. P. Berman, and
P. Maechling, “An evaluation of the cost and performance
of scientific workflows on amazon ec2,” J. Grid Comput.,
vol. 10, no. 1, pp. 5–21, Mar. 2012.

[3] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey
of large scale data management approaches in cloud environ-
ments,” IEEE Communications Surveys and Tutorials, vol. 13,
no. 3, pp. 311–336, 2011.

[4] “Ocean Observatory Initiative,”
http://oceanobservatories.org/.

[5] A. Padmanabhan, S. Wang, G. Cao, M. Hwang, Y. Zhao,
Z. Zhang, and Y. Gao, “Flumapper: an interactive cybergis
environment for massive location-based social media data
analysis,” in Proceedings of the Conference on Extreme
Science and Engineering Discovery Environment: Gateway
to Discovery, ser. XSEDE ’13. New York, NY, USA: ACM,
2013, pp. 33:1–33:2.

[6] J. Balewski, J. Lauret, D. Olson, I. Sakrejda, D. Arkhipkin,
J. Bresnahan, K. Keahey, J. Porter, J. Stevens, and M. Walker,
“Offloading peak processing to virtual farm by STAR experi-
ment at RHIC,” Journal of Physics: Conference Series, 2012.

[7] K. R. Jackson, L. Ramakrishnan, K. J. Runge, and R. C.
Thomas, “Seeking supernovae in the clouds: a performance
study,” in Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing, ser.
HPDC ’10. New York, NY, USA: ACM, 2010, pp. 421–
429.

[8] “ATLAS,” http://home.web.cern.ch/fr/about/experiments/atlas.

[9] “ATLAS Applications,” https://twiki.cern.ch/twiki/bin/viewauth/Atlas
Protected/PhysicsAnalysisWorkBookRel16D3PDAnalysisExample.

[10] “Amazon EBS,” http://aws.amazon.com/fr/ebs/.

[11] “Azure Drives,” http://msdn.microsoft.com/en-
us/library/windowsazure/jj156162.aspx.

[12] “Amazon S3,” http://aws.amazon.com/s3/.

[13] “Amazon Glacier,” http://aws.amazon.com/glacier/.

[14] “Microsoft Azure BLOBs,”
http://www.windowsazure.com/en-us/develop/net/how-to-
guides/blob-storage/.

[15] B. e. a. Calder, “Windows azure storage: a highly
available cloud storage service with strong consistency,”
in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, ser. SOSP ’11. New York,
NY, USA: ACM, 2011, pp. 143–157. [Online]. Available:
http://doi.acm.org/10.1145/2043556.2043571

[16] “Google Cloud Storage,” https://cloud.google.com/products/cloud-
storage.

[17] S. J. Kazemitabar, F. Banaei-Kashani, and D. McLeod,
“Geostreaming in cloud,” in Proceedings of the
2nd ACM SIGSPATIAL International Workshop on
GeoStreaming, ser. IWGS ’11. New York, NY,
USA: ACM, 2011, pp. 3–9. [Online]. Available:
http://doi.acm.org/10.1145/2064959.2064962

[18] A. Costan, R. Tudoran, G. Antoniu, and G. Brasche, “Tomus-
Blobs: Scalable Data-intensive Processing on Azure Clouds,”
Journal of Concurrency and computation: practice and expe-
rience, 2013.

[19] “ROOT Framework,” http://root.cern.ch/drupal/.

[20] “FutureGrid,” https://portal.futuregrid.org/.

[21] “Nimbus,” http://nimbusproject.org/.

[22] “OpenStack,” http://openstack.org/software/grizzly/.

[23] “Azure,” http://www.windowsazure.com/en-us/.

[24] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf,
“Damaris: How to Efficiently Leverage Multicore Parallelism
to Achieve Scalable, Jitter-free I/O,” in CLUSTER - IEEE
International Conference on Cluster Computing, 2012.

[25] E. Feller, L. Ramakrishnan, and C. Morin, “On the Per-
formance and Energy Efficiency of Hadoop Deployment
Models,” in The IEEE International Conference on Big Data
2013 (IEEE BigData 2013), Santa Clara, États-Unis, Oct.
2013, grid’5000 Grid’5000.

[26] S. Gamage, R. R. Kompella, D. Xu, and A. Kangarlou,
“Protocol responsibility offloading to improve tcp throughput
in virtualized environments,” ACM Trans. Comput. Syst.,
vol. 31, no. 3, pp. 7:1–7:34, Aug. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2491463

[27] E. Yildirim and T. Kosar, “Network-aware end-to-
end data throughput optimization,” in Proceedings of
the first international workshop on Network-aware
data management, ser. NDM ’11. New York, NY,
USA: ACM, 2011, pp. 21–30. [Online]. Available:
http://doi.acm.org/10.1145/2110217.2110221

[28] G. Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu, P. Sa-
dayappan, and J. Saltz, “A dynamic scheduling approach
for coordinated wide-area data transfers using gridftp,” in
Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, 2008, pp. 1–12.

[29] J. CalA, H. Hiden, S. Woodman, and P. Watson, “Cloud
computing for fast prediction of chemical activity,” Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1860–1869, Sep.
2013.

[30] L. Hodgkinson, J. Rosa, and E. A. Brewer, “Parallel software
architecture for experimental workflows in computational
biology on clouds,” in Proceedings of the 9th international
conference on Parallel Processing and Applied Mathematics -
Volume Part II, ser. PPAM’11. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 281–291.

[31] N. Edwards, M. Watkins, M. Gates, A. Coles, E. Deliot,
A. Edwards, A. Fischer, P. Goldsack, T. Hancock, D. McCabe,
T. Reddin, J. Sullivan, P. Toft, and L. Wilcock, “High-speed
storage nodes for the cloud,” in Proceedings of the 2011
Fourth IEEE International Conference on Utility and Cloud
Computing, ser. UCC ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 25–32. [Online]. Available:
http://dx.doi.org/10.1109/UCC.2011.14

[32] R. Tudoran, A. Costan, and G. Antoniu, “Datasteward: Using
dedicated compute nodes for scalable data management on
public clouds,” in Proceedings of the 11th IEEE Interna-
tional Symposium on Parallel and Distributed Processing with
Applications, ser. ISPA ’13. Washington, DC, USA: IEEE
Computer Society, 2013.

[33] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey,
“Early observations on the performance of windows azure,”
Sci. Program., vol. 19, no. 2-3, pp. 121–132, Apr. 2011.

[34] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, Jan. 2008.

[35] Z. Fadika, M. Govindaraju, R. Canon, and L. Ramakrishnan,
“Evaluating hadoop for data-intensive scientific operations,”
in Proceedings of the 2012 IEEE Fifth International Confer-
ence on Cloud Computing, ser. CLOUD ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 67–74.

[36] “Hadoop,” http://hadoop.apache.org/.

[37] D. Alves, P. Bizarro, and P. Marques, “Flood: elastic stream-
ing mapreduce,” in Proceedings of the Fourth ACM Interna-
tional Conference on Distributed Event-Based Systems, ser.
DEBS ’10. New York, NY, USA: ACM, 2010, pp. 113–
114.

[38] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: fault-tolerant streaming computation at
scale,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, ser. SOSP ’13. New York,
NY, USA: ACM, 2013, pp. 423–438.

[39] U. Verner, A. Schuster, M. Silberstein, and A. Mendelson,
“Scheduling processing of real-time data streams on hetero-
geneous multi-gpu systems,” in Proceedings of the 5th Annual
International Systems and Storage Conference, ser. SYSTOR
’12. New York, NY, USA: ACM, 2012, pp. 8:1–8:12.

[40] Y. Simmhan, C. van Ingen, G. Subramanian, and
J. Li, “Bridging the gap between desktop and the
cloud for escience applications,” in Proceedings of
the 2010 IEEE 3rd International Conference on Cloud
Computing, ser. CLOUD ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 474–481. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2010.72

[41] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” in Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, ser. Eu-
roSys ’07. New York, NY, USA: ACM, 2007, pp. 59–72.

[42] A. Baptista, B. Howe, J. Freire, D. Maier, and C. T. Silva,
“Scientific exploration in the era of ocean observatories,”
Computing in Science and Engg., vol. 10, no. 3, pp. 53–58,
May 2008.

[43] L. Wang, J. Tao, H. Marten, A. Streit, S. U. Khan,
J. Kolodziej, and D. Chen, “Mapreduce across distributed
clusters for data-intensive applications,” in Proceedings of the
2012 IEEE 26th International Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum, ser. IPDPSW
’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 2004–2011.

[44] Y. Luo and B. Plale, “Hierarchical mapreduce programming
model and scheduling algorithms,” in Proceedings of the
2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (Ccgrid 2012), ser. CCGRID ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp.
769–774.

